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Introduction.

High dynamic range imaging and signal processing require more compact floating point representations 
than single precision (32-bit) IEEE 754 standard allows.  To meet these objectives, a 16-bit “half” float 
data type was introduced.  Hardware support for these is now common place in Graphics Processing 
Units (GPU's), but unfortunately not yet in CPU's.
Because of this, calculations using 16-bit half-floats must be done using regular 32-bit IEEE floats, 
necessitating frequent conversions from half-floats to floats and vice-versa.

Half Float Representations.

The half-float data type is inspired by the IEEE 754 standard, except sacrifices range and accuracy in 
favor of representation size.  A half-float comprises a sign bit, a 5-bit exponent with a bias of 15, and a 
10-bit mantissa, see Figure 1 below.
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Figure 1. Half Float Representation

Interpretation of the half float representation is as follows:

● If the exponent field is in the range [1..30], then the value represented is:

value = (-1)s  ∙  2(eeeee-15)  ∙ 1.mmmmmmmmmm

This is the case for normalized half-float numbers.

● If the exponent field is 0 (zero), and the mantissa is not zero:

value = (-1)s  ∙  2-14  ∙ 0.mmmmmmmmmm

In this particular case, the number is called subnormal (denormal), and has less accuracy in its 
mantissa.

● If the exponent field is zero, and the mantissa is also zero:

value = ±0.0

● If the exponent value is 31, and the mantissa is 0 (zero):



value = ±∞ (Infinity)

● Finally, if the exponent is 31 and the mantissa is not zero:

value = ±NaN (Non a Number)

Conversion Requirements.

When performing calculations using half-floats numbers, the numbers must be converted to floats first, 
and then back to half-floats.  Consequently, these conversions must be very fast.  Also, it would be nice 
if a conversion from half-float to float and then back to half-float would yield the original number.
Finally, special cases like subnormal numbers, infinity, and NaNs should be handled properly.

The IEEE 754 float representation, shown in Figure 2, is the format to/from which the half-floats are to  
be converted.  The IEEE 754 float comprises a sign bit, an 8-bit exponent with a bias of 128, and a 23-
bit mantissa.
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Figure 2. IEEE 754 Float Representation.

Conversion of Half Float to Float.

Conversion of half float to float is, in principle, simple: copy the sign bit, subtract the half-float bias 
(15) from the exponent and add the single-precision float bias (127), and append 13 zero-bits to the 
mantissa.  In C code:

f = ((h&0x8000)<<16) | (((h&0x7c00)+0x1C000)<<13) | ((h&0x03FF)<<13)

The above expression  however  only  works  for  “normal”  half-float  numbers;  it  does  not  work for 
special cases such as zero or subnormal (denormal) numbers.
A correct conversion must treat all the special cases:

1. Zero (and negative zero).
2. Subnormal half-float values should map to their corresponding float values; since floats have a 

larger range that half-floats, subnormal half-float values will map to proper float values.
3. The half float value Infinity should map to a float value of  Infinity.
4. Half float NaN (not a number) values should map to float NaN values.

A simple and correct algorithm for the conversion would be to pre-calculate all possible conversion 
values. There are only 65536 of them.  Unfortunately, that is still a very large table (262,144 bytes to be 
exact).
Fortunately, it is possible to reduce the size of the table by exploiting some patterns in the lookup 
process:



● Except for the case where the exponent of the half-float is 0, the mantissa is always simply 
padded with zeros.

● When the exponent is of the half-float is 31 (the number represents either Infinity or NaN), the 
resulting float number must have an exponent value of 255.

● When the exponent  of the half-float  is  zero and the mantissa is  non-zero,  the number is  a 
subnormal  half-float.   These  values  can  be  represented  as  normalized  float  by  adjusting 
exponent and shifting the mantissa appropriately.

At the expense of a few extra operations, the original direct lookup method can be reimplemented with 
substantially smaller tables:

f=mantissatable[offsettable[h>>10]+(h&0x3ff)]+exponenttable[h>>10]

In the above, the mantissatable is only 2028 entries, and the offsettable and exponenttable are only 
64 entries each.  The total amount of space required is thus only 8576 bytes [the offsettable requires 
only 2 bytes per entry], a mere 3.2% of the original table size.  This much smaller table is more likely 
to fit into modern processor caches and thus this algorithm is expected to run faster than the original  
simple lookup process due to faster memory accesses, despite performing a few more operations.

The mantissatable is populated as follows:

mantissatable[0] = 0

mantissatable[i] = convertmantissa(i) for i = 1..1023

mantissatable[i] = 0x38000000 + ((i-1024)<<13) for i = 1024...2047

The exponenttable is set up as below:

exponenttable[0] = 0,
exponenttable[32]= 0x80000000

exponenttable[i] = i<<23 for i = 1..30
exponenttable[i] = 0x80000000 + (i-32)<<23 for i = 33..62

exponenttable[31]= 0x47800000
exponenttable[63]= 0xC7800000

And finally, the offsettable is filled as below:

offsettable[0] = 0
offsettable[32]= 0

offsettable[i] = 1024 everywhere else.

The function  convertmantissa() transforms the subnormal representation to a normalized one, as 
follows:

unsigned int convertmantissa(unsigned int i){
unsigned int m=i<<13; // Zero pad mantissa bits
unsigned int e=0; // Zero exponent



    while(!(m&0x00800000)){ // While not normalized
      e-=0x00800000; // Decrement exponent (1<<23)
      m<<=1; // Shift mantissa
      }
    m&=~0x00800000; // Clear leading 1 bit
    e+=0x38800000; // Adjust bias ((127-14)<<23)

return m | e; // Return combined number
}

Description of the algorithm.  Essentially, the conversion of a half-float to a float is written as the 
conversion of the mantissa plus the conversion of the exponent and the sign. There are essentially three 
cases. In the subnormal case, the half-float exponent is zero.  The half-float mantissa is normalized and 
the exponent is adjust accordingly.  This calculation was performed by convertmantissa() when the 
table was generated. We only need to add the sign.
In the normal case, the half-float exponent is non-zero, and we simply shift the mantissa left over 13 
bits and add the exponent bias adjustment (127-15)<<23, or 0x38000000.  To this, the value of the 
exponent is simply added. Finally, in the case of Infinity or NaN, the mantissa is treated as before,  
except now an extra adjustment needs to be added (255-(127-15))<<23, or 0x47800000) to obtain the 
proper exponent value for Infinite or NaN numbers in the float representation.

Timings have been performed on a 2GHz Core^2 Duo Intel CPU, yielding typically about 5.6ns for this 
conversion.

Conversion of Float to Half-Float.

Intuitively, conversion from float to half-float is a slightly more complex process, due to the need to 
handle overflows and underflows. As before, there is a compact and simple version which is pretty 
straight-forward:

   h = ((f>>16)&0x8000)|((((f&0x7f800000)-0x38000000)>>13)&0x7c00)|((f>>13)&0x03ff)

In a nutshell, first the sign bit is shifted and masked, then the exponent is masked off, and the bias-
correction subtracted; the result is shifted, and finally the mantissa is shifted and masked off. All the 
pieces are then assembled together.
The above expression suffers from a few fatal flaws, however.  It doesn't handle zero, Infinity, NaN, or 
small float numbers which are only representable as subnormal half-floats. 
Proper conversion must handle the following cases:

1. Really small numbers and zero should map to a half-float value of zero.
2. Small numbers should convert to subnormal half-float values.
3. Regular magnitude numbers should just lose some precision.
4. Large numbers should map to half-float Infinity.
5. Infinity and NaNs should remain Infinity and NaNs in their half-float representation.

Ideally, it would be nice if the conversions were round-trip safe, i.e. half-float → float →half-float 
would yield the same identical number one started out with.

Fortunately, extremely fast conversion can again be implemented using a purely table-driven approach. 



The algorithm is as follows:

h=basetable[(f>>23)&0x1ff]+((f&0x007fffff)>>shifttable[(f>>23)&0x1ff])

The algorithm uses only two small tables, each with 512 entries only.  The  basetable is only 1024 
bytes, while the shifttable is only 512 bytes, yielding a total of 1536 bytes.

The tables are populated using a small program, although in an actual deployment these tables are more 
likely fixed at compile time:

void generatetables(){
  unsigned int i;
  int e;
  for(i=0; i<256; ++i){
    e=i-127;
    if(e<-24){                  // Very small numbers map to zero
      basetable[i|0x000]=0x0000;
      basetable[i|0x100]=0x8000;
      shifttable[i|0x000]=24;
      shifttable[i|0x100]=24;
    }
    else if(e<-14){             // Small numbers map to denorms
      basetable[i|0x000]=(0x0400>>(-e-14));
      basetable[i|0x100]=(0x0400>>(-e-14)) | 0x8000;
      shifttable[i|0x000]=-e-1;
      shifttable[i|0x100]=-e-1;
    }
    else if(e<=15){             // Normal numbers just lose precision
      basetable[i|0x000]=((e+15)<<10);
      basetable[i|0x100]=((e+15)<<10) | 0x8000;
      shifttable[i|0x000]=13;
      shifttable[i|0x100]=13;
    }
    else if(e<128){             // Large numbers map to Infinity
      basetable[i|0x000]=0x7C00;
      basetable[i|0x100]=0xFC00;
      shifttable[i|0x000]=24;
      shifttable[i|0x100]=24;
    }
    else{                       // Infinity and NaN's stay Infinity and NaN's
      basetable[i|0x000]=0x7C00;
      basetable[i|0x100]=0xFC00;
      shifttable[i|0x000]=13;
      shifttable[i|0x100]=13;
    }
  }
}

Description of the algorithm.  There are five cases, each case solely identified by the exponent value of  
the incoming number.

● When the magnitude of the number is really small (2-24 or smaller), there is no possible half-
float representation for the number, so it must be mapped to zero. This is accomplished by 
setting the  basetable entries to zero (or zero with sign). The  shifttable entries are set to 24, 



meaning all the bits of the original mantissa are shifted out completely, leaving just zero.
● When  the  number  is  small  (smaller  than  2-14),  the  value  can  only  be  represented  using  a 

subnormal  half-float.  This  is  the  most  complex  case:  first,  the  leading  1  bit,  implicitly 
represented in the normalized representation, must be explicitly added, and then the resulting 
mantissa  must  be  shifted  rightward,  over  a  number  of  bit-positions  as  determined  by  the 
exponent. In the above implementation however, we prefer to shift the original mantissa bits, 
and add the pre-shifted 1-bit to it. Thus, the basetable entry is filled with the expression: 

basetable[i] = 0x0400>>(-e-14), where e=i-127 and -24<=e<-14.

As before, for negative numbers a sign-bit (0x8000) is also added to the basetable entry.

● Normal numbers (smaller than 215), can be represented using half-floats, albeit with slightly less 
precision. The entries in the basetable are simply set to the bias-adjust exponent value, shifted 
into the right position. A sign bit is added for the negative case.

● Large float values (numbers less than 2128 ) must be mapped to half-float Infinity. They are too 
large to be represented as half-floats. In this case the basetable must be set  to 0x7C00 (with 
sign if negative) and the mantissa must be zeroed out, which is accomplished by shifting out all 
mantissa bits.
 

● Finally, remaining float numbers, Infinity and NaNs should stay Infinity and NaNs after half-
float conversion. The basetable entry is exactly the same as for the previous case, except the 
mantissa-bits are to be preserved as much as possible, thus ensuring that Infinity stays infinite 
and NaN's stay NaN's.

Timings have been performed on this algorithm, again on a 2GHz Core^2 Duo Intel CPU. Typical 
values are around 3.25ns for each conversion.

Conclusion.

Extremely fast half-float to float and float to half-float conversion algorithms have been introduced. 
They are branch-free,  table-driven, using fairly compact tables which are easily fitted into primary 
caches on modern CPUs.
Contrary to expectation, conversion from half-float to float takes a bit longer than the other way round, 
at least on the processors tested. Since both forward and backward conversion are very similar in terms  
of number of operations, this difference is largely attributed to the fact that the lookup tables in the 
half-float to float case are much larger, and perhaps may reside partially in L2 cache instead of fitting 
completely in L1 cache.
Either way, these new conversions are very fast, and represent a substantial improvement over previous 
known algorithms, both in speed as well as storage requirements.

Revisions.

Sept. 2, 2010. The expression (18-e) in the case when e is in the range [-24..-14] relied on portable  
compiler behavior.  A better method is to shift by (-e-14) which will never be negative. Thanks for 
Mike Schuster for pointing this out.


